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PACS. 87.16.Dg — Membranes, bilayers, and vesicles.
PACS. 68.15.+e — Liquid thin films.

Abstract. — We investigate interactions between an elastic membrane and a substrate char-
acterized by quenched positional disorder in the height function. We show that the positional
disorder transforms the standard secondary DLVO minimum into two separate states: the hov-
ering state characterized by a planar membrane at a finite separation from the interface and a
pinned state where the membrane follows closely the asperities of the substrate and is, as a con-
sequence, quite corrugated. The transition between the two states is continuous and depends
on the parameters of the underlying DLVO potential as well as the parameters describing the
quenched height-height correlation function of the substrate.

In the DLVO theory one usually assumes that when a membrane or, in general, an elastic
manifold interacts with a rigid substrate, the membrane is modelled as flat and the substrate is
envisioned as featureless [1]. This leads in a straightforward manner to the secondary minimum
of the DLVO theory and to an equilibrium spacing between the membrane and the substrate.
Taking into account the elastic degrees of freedom of a membrane can alter this picture
drastically, leading to the emergence of Helfrich interaction which may induce an unbinding
transition of the membrane. This transition has been clearly shown to be a consequence of
the interplay between elastic fluctuations of the membrane and DLVO interactions between
the membrane and the substrate [2].

In the present work we are motivated by recent experiments on deposited lipid multilayers
on atomically smooth vs. rough surfaces [3]. These experiments reveal differences in equilib-
rium lamellar spacings of lipid multilayers in proximity of a substrate that seem to correlate
with molecular roughness of the substrate [3]. In order to lay ground for understanding effects
of this type, it is desirable to relax the model constraint of a featureless substrate and treat it
supposedly more realistically as exhibiting (quenched) disorder in the height function. We will
analyze the consequences of this new model of a substrate interacting with a membrane and
show that it modifies the simplified DLVO conclusions in the sense that the original secondary
DLVO minimum now splits into two separate states, characterized by the way the membrane
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is (de)coupled to the substrate. We call these states the hovering state and the pinned state.
The former one is characterized by a membrane in a flat configuration hovering a certain
finite distance above the substrate and is directly related to the standard DLVO secondary
minimum. The latter one is characterized by a corrugated membrane that basically follows
the asperities of the quenched positional disorder of the substrate and is altogether missing
from the standard DLVO theory. We stress that our description is unifying in the sense that
it combines aspects of mean-field theory [4], which focuses on the nature of the pinned state;
and a straightforward generalization [5] of Li and Kardar’s [6] Gaussian fluctuation theory,
which allows for a hovering state determined by the parameters of the DLVO interaction po-
tential. Specifically, we find that for sufficiently strong disorder, the membrane indeed prefers
the mean-field pinned state considered by Swain and Andelman [4]. Because of the increased
role of substrate disorder fluctuations, in weakly disordered systems the properly self-averaged
free energy can give way to a hovering state where the membrane is depinned, residing in a
minimum related to but different from the usual DLVO minimum, as predicted by Gaussian
fluctuation theory.

We introduce our approach by first specifying the model of the membrane and the sub-
strate that interact via a DLVO potential with (for matters of convenience) hydration and
van der Waals terms. Formally, our analysis owes a lot to investigations of effects of the
disorder on polymerized membranes that have been analyzed in a variety of contexts [7]. It
is based on the assumption of a Gaussian disordered substrate height distribution function
and the application of the 1/d expansion method [8] (!) to evaluate the complicated partition
function stemming from the replicated Hamiltonian [9]. This approach allows us to evaluate
the coupled effect of the fluctuations and disorder on the mean-field configuration itself, as
opposed to the Gaussian fluctuation theory [6] which considers only fluctuations around a
disorder-unperturbed mean-field.

The Hamiltonian of a flexible membrane described in the usual Monge parameterization
u(p), where p = (z,y) is a 2D coordinate vector, above a substrate characterized by the
height function ((p), where ((p) is a quenched-disorder field describing the profile of the
substrate, is composed of three contributions. First of all, we have the elastic energy of
the membrane, then the interaction free energy per unit surface area between the membrane
and the substrate V(u(p) — ((p)) of the general DLVO form, and, finally, the free-energy
contribution of an external force per unit surface area m pushing the membrane towards the
substrate. The total free energy or, equivalently, the mesoscopic Hamiltonian thus assumes
the form

Hlup) = 5 [ [€0dp'K(p. o ulp)utel) + [€pV(ulp) = (o)) + [pm(utp) = C(p).

Usually, one takes for the elastic part the classical Canham-Helfrich-Evans ansatz K(p, p') =
V4ch52(p — p'), where K, is the bending modulus of the membrane, while the interaction
part is composed of the attractive and repulsive DLVO ingredients. Since the interaction part
of the Hamiltonian is, in general, non-linear, it is convenient to introduce the following new
variable: B(p) = (u(p) — ((p))? at every p via a functional constraint [10],

SHIB(P).9(p)] = 5 [ osle) (ulp) — (o)) ~ B(p).

Clearly, the auxiliary field g(p) plays a role akin to the self-energy part of the Green func-
tion. The two auxiliary fields B(p) and g(p) just introduced play the role of fixing the local

(Y)Strictly speaking, what we use is actually a 1/(d — 2) expansion, since the displacement field is one-
dimensional.
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constraint (u(p) — ((p))? = B(p). They also show up in the partition function, where one

has to eventually take the trace over these auxiliary fields together with u(p). The partition
function can thus be written as

Z[¢(p)] = /DU(P)DB(p)Dg(p) exp [ — B(H[u(p)] + dH[B(p),9(p)])]-

The average over the quenched-disorder distribution, assuming the self-averaging property of
the free energy, is defined to be of the form

Ca= [ Do Pl = [ Dol dew | - 5 [[Eodosio o).

where, by assumption, the disorder probability distribution function P({(p)) that charac-
terizes the quenched disorder in the height function of the substrate is given by a Gaussian
ansatz. The free energy, after being averaged also over the quenched-disorder distribution, is
obtained finally as

F:_kTmz—leimm_

n—0 n

(1)

With these preliminaries the free energy eq. (1) can be evaluated via the standard Edwards-
Anderson replica trick [9], where the replicated Hamiltonian H,, is composed of the replicated

elastic term L&
52//d2pd2p’/C(p7 P ui(p)ui(p),
=0

where 7 is the index of the replica, the replicated constraint on the variable B;(p) that now
reads

32 [ ouite)((wile) - () - Bilp)
=0

and, finally, of the replicated interaction and external “source” terms

> [@oviBio) + Y [ don(ute) - c(p).
1=0 =0

Since we now have Gaussian integrals over the variables u;(p), {(p), we can evaluate them
explicitly, while the functional integrals over the auxiliary fields B;(p), g:(p) can be evaluated
on the saddle point level, with the proviso that there is no replica symmetry breaking. This
constitutes the essence of the 1/d expansion in this context. We have obviously ignored the
steric constraint between w;(p), ((p) which would lead straightforwardly to Helfrich interac-
tions, since we are not able to evaluate the ensuing functional integral. We will nevertheless
put in the steric interactions “by hand” at the end of our calculation.

After performing all the indicated integrations and taking the n — 0 limit, the free energy
can be obtained as a sum of the mean-field part (?) and a fluctuation part. The mean-field
part is

Fo = /dzpwuo(p)Jr%//d2pd2p’x(p7p’)uo(p)uo(p'),

where the mean field ug(p) is obtained via minimization of Fy with

(2)Not to be confused with the mean-field approach introduced in [4]. The term mean field is used here
strictly as it pertains to the 1/d expansion.
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x(p, ") =K(p,p') +6*(p — p)g(p).

Again we note that on the 1/d expansion level the mean-field part includes the effect of the dis-
order, the g(p) term in the above equation, contrary to the Gaussian fluctuation approach [6].
The fluctuation part of the free energy is concurrently obtained as

F =5 [ @00 0note) - [ [ a6 6 pslp)gle) -

-5 [ EesBe)+ [ & pviBi), 2)

On the 1/d expansion level the auxiliary fields contribute only at the saddle point. The
saddle point equations are now obtained simply by minimizing eq. (2) with respect to B(p)
and g(p). We will not reproduce the general rather awkward form of these equations, but
will concentrate on a rather particular solution characterized by uy = const and B = const,
implying also g = const. In addition to this, we will limit ourselves to the conceptually most
interesting case of vanishing external confining force, i.e. 7 = 0.

Assuming that the system is homogeneous in the p plane, we can introduce the Fourier
transforms of all the relevant quantities that allow us to write the mean-field equations in a

rather simple form:
uox(Q = 0) = ugg = 0. (3)
The saddle points for B and g are obtained, respectively, as
ov(B) 1 2 K(@Q)?
=_g, and B =ui + kT .
OB 2 0 XQ: g(Q)(K(Q) +9)°

This set of equations has two fundamentally different solutions describing the state of the
elastic membrane interacting with a disordered substrate.
1) a hovering state, with ug # 0, g = 0, characterized by

oV (B) . 2 -1
og =0 with  B=uj+ kT%:g Q). (4)
2) and a pinned state, with ug = 0, g # 0, characterized by
ov(B) 1 . K(@Q)?
= —g, ith B=kT . 5
o 2%V 2 QK@ 7 o7 ®)

Obviously, in order to progress we have to assume a certain form for the quenched-disorder
correlation function. As a simplest approximation we take a spatially short-range coupling
G(p,p') = G&2*(p — p'), implying G(Q) = G. Thus, we have in the hovering state

oV (B .
3(B ) =0, with u3 = B - B, (6)
where we introduced B, = kT' ZQ G HQ) = %%, that obviously depends on the upper

wave vector cutoff in the Fourier space. The first of the above equations determines B as
a function of the parameters of the DLVO potential (e.g., Hamaker constant, hydration in-
teraction strength, etc.). The second one gives the dependence of uy on these parameters.

In order to understand the physical nature of the two phases, we evaluate the average of
the separation between the substrate and the membrane that can be obtained as

571 / ap ((alp) — ()] = uo.
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Fig. 1 — Upper left: schematic dependence of up on the auxiliary field B. The hovering state exists
only for B > B.. The critical value B. depends on the disorder characteristics of the substrate and
the microscopic wave vector cutoff. The hovering-pinned transition is obviously second order in B,
which thus plays the role of the temperature. Upper right: Schematic phase diagram of a membrane
as a function of the Hamaker coefficient; V' (u) is assumed to be equal to the sum of hydration, van
der Waals and Helfrich terms eq. (7). The substrate disorder introduces a hovering (H) state window
into the phase diagram, located between the pinned (P) and the unbound (U) phases. Two possible
(H-U) boundaries are indicated by the H1 and H2 lines. The size of this window depends on the
strength of the Hamaker coefficient and the value of G, characterizing the disorder effects. In the
case of no disorder (B — 0) the critical value of the Hamaker coefficient H. marks the unbinding
transition of the membrane. Bottom: a schematic representation of the hovering (H) and the pinned
(P) state of the membrane in proximity of a disordered substrate. The hovering state is characterized
by a slowly varying average separation between the membrane and the substrate that does not follow
closely the local corrugations of the substrate. In the pinned state, however, the membrane follows
closely the asperities of the substrate.

Clearly, ug quantifies the disorder-averaged separation between the membrane and the sub-
strate. For a finite ug the membrane hovers a finite separation away from the substrate. In
order to characterize the hovering state further, we evaluate the average square of the de-
viation from a unit normal to the membrane in the z-direction given to the lowest order as
n(p) =~V -u(p),

o R kT92 Q2 . kT qg
=9 1/d p (6n2(p)) = °C %(K(Q)Jrgy*ﬂc'f(c'

Thus, in the hovering state with g = 0 not only is the membrane decoupled from the substrate
and hovers above it, but also appears to be flat on the average, since the mean disorder-
averaged squared deviation from the normal, p?, equals zero at a finite separation wug (see
fig. 1). One should not forget here that all the averages are also with respect to the quenched
surface disorder and thus the membrane appears to be “flat” only in the sense that it does not
follow the disordered corrugations of the substrate. Its elastic fluctuations, however, before
the disorder average, are not zero! This statement is true of course only to the lowest order
in the 1/d expansion. In order to analyze the fluctuations around this state, one should go to
higher-order terms.
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Obviously, the hovering solution exists only for B > B.. The hovering line in the “phase
diagram” thus ends at the value of the interaction parameters where the solution of axgggB) =0
also satisfies B = B.. ug thus behaves as an order parameter of a second-order phase tran-
sition, and B behaves as the temperature. Furthermore, the surface density of the adhesion

free energy (U) in the hovering state is given by

U =min{F/S} = V(B) =V (u} + B.).

This obviously differs from the standard secondary minimum of the DLVO theory, determined
from %ﬂ’;‘]) = 0, with U = V(up). The free energy in the hovering state is thus not given
by the value of the DLVO potential at the minimum V (ug), but at a (much smaller) value of
V(u3 + B.), since V is a decreasing function of its argument above its minimum.

In the hovering state the membrane is obviously in close proximity (“contact”) of the
substrate only for a fraction of its total surface area. This effective contact area (S;) can be
estimated [4] from S./S = V(u3 + B.)/V(u3). In view of the discussion presented above,
this ratio is smaller than one if V' is a decreasing function of its argument above its minimum
value.

For the pinned state, with K(Q) = Q* K., we obtain the following expression to the lowest
order in the wave vector cutoff Qax:

ov(B) 1 , SET [
_1 h BB -2l |9
o 27 W 166G\ K.

where B, is defined in the same way as in the hovering state. The adhesion free energy in the
pinned state, defined in complete analogy with the hovering state, is given by

3
B KTK. (g \* _ 163 K.G? s
U=V(B)+ & (F) =V(B)+ = BT (B. — B).

In the pinned state the membrane is thus coupled to the substrate and follows it closely, being
always in its close proximity since ug = 0 (see fig. 1). It thus exhibits a very corrugated
configuration since in the pinned state p? # 0. We note that for non-zero external driving
force 7 the system is always in the pinned state.

The adhesion energy in both states is nowhere in general equal to its DLVO counterpart.
Both the hovering as well as the pinned states carry in the free energy the signature of the
substrate disorder in the height-height correlations. Only in the limit of vanishing disorder,
or in the language of our model as G — oo, does the hovering state approach the DLVO
secondary minimum in a continuous fashion, while the pinned state simply disappears.

In order to gain further insight into the nature of the hovering and the pinned states, we
investigate the phase diagram for a particular typical choice of the DLVO interaction potential
augmented by the Helfrich undulation interaction. The latter has to be put in “by hand” [4]
because the steric constraint it introduces into the functional integral for the partition function
is extremely difficult to handle. For the sake of simplicity, we assume that the DLVO part is
given by the sum of the hydration and van der Waals interactions while the Helfrich interaction
is assumed to have the same form as between a flexible membrane and a flat substrate [1,2],

H 672 (kT)?
127u?2 256K u?’

V(u) = Ae™ /¢ — (7)

where A is the magnitude and £ the range of the hydration interaction, and treat the Hamaker
constant H as a variable tuning parameter. The above form of the total interaction energy
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between a membrane and a substrate would be strictly valid only for a membrane fluctuating
near a flat substrate. However, Swain and Andelman note [4] that the form of the Helfrich in-
teraction should not be far off from the one in the above expression even for a rough substrate.
We assume this is the case when we analyze the phase diagram for a membrane near a disor-
dered substrate. This assumption would however have to be tested via a more sophisticated
and hopefully more accurate approach.

Without the disorder the interaction potential eq. (7) leads to an unbinding transition at
the critical value of the Hamaker constant equal to H., = %. When H approaches this
value, the secondary DLVO minimum is displaced towards inﬁncity and we have a continuous
unbinding of the membrane. Adding disorder to this scenario we instead obtain a modified
phase diagram as presented in fig. 1. There is now a window corresponding to the hovering
state (the former DLVO secondary minimum) in between the pinned and the unbound state
of the membrane. The dimensions of this window depend on the value of G that characterizes
the intensity of the substrate disorder. In the limit of no disorder G — oo with B. — 0 the
hovering window is expanded to the whole axis H > H, and is transformed back into the
standard DLVO secondary minimum.

The disorder usually does not figure in the theories of membrane substrate interactions.
The present work is basically a plea for a change of this perspective. There obviously exist
phenomena, where ignoring the disordered nature of the substrate does not, even qualitatively,
lead to the correct physical picture. In this sense the DLVO theory has to be amended.
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